The University of Texas Health Science Center
School of Public Health
Dept of Biostatistics
and Data Science
ABCD Research Group
The 2nd JCSDSC, Kunming, China July 12, 2024
Funding: NIH R01MH126970, R01EB022911
Collaborators
Yi Zhao
Indiana Univ
Michael Sobel
Columbia Univ
Martin Lindquist
Johns Hopkins Univ
Brian Caffo
Johns Hopkins Univ
Slides viewable on web: bit.ly/fmjcsds
fMRI Experiments
Task fMRI: performs tasks under brain scanning
Randomized stop/go task:
press button if "go";
withhold pressing if "stop"
Not resting-state: "do nothing" during scanning
Goal: infer dynamic brain activation and connectivity
fMRI data: blood-oxygen-level dependent (BOLD) signals from each
cube. Each subject: observe matrix regions $\times$ time
Functional Data
Time (seconds)
Black: fMRI BOLD activity
Blue: stop onset times;
Red: go onset times
Hemodynamic Response Function (HRF)
$\otimes$
$=$
Stimulus sequence convolutions are functional data
Functional Mediation: Conceptual
All are functional data
Arrows represent quantifiable causal effects (curves)
Literature Review
Mediation is an active area
Classical mediation deals with scalar variables Baron and Kenny, 1986
Recent work on sparse longitudinal data Zheng and van der Laan, 2017; VanderWeele and Tchetgen Tchetgen, 2017
Multilevel data Zhao and Luo, 2023
High dimensional settings Zhao and Luo, 2022
Intersection with functional/time series models
Parametric time series models Zhao and Luo, 2019
Sparse and irregular longitudinal data Zeng and others, 2021
Functional mediation with scalar treatments and outcomes Lindquist, 2012
Spatial-temporal mediator with scalar variables Jiang and Colditz, 2023; Xu and Kang, 2023
This work: functional treatments, functional mediators, and functional outcomes
Causal Estimands and Assumptions
Notations
Let $Z_{t}\in\mathcal{D}_{t}^{z}$, $M_{t}\in\mathcal{D}_{t}^{m}$, and $Y_{t}\in\mathcal{D}_{t}^{y}$ observed at time $t \in [0, T].$
Let $\bar{Z}_{[s,t]}=\{Z_{u}:s\leq u\leq t\}$, similarly for $\bar{M}_{[s,t]}$, and $\bar{Y}_{[s,t]}$.
When $s=0$, write $\bar{Z}_{[0,t]}\equiv\bar{Z}_{t}$, similarly for $\bar{M}_{[0,t]}$ and $\bar{Y}_{[0,t]}$.
Let $M_{t}(\bar{z}_{T})$ and $Y_{t}(\bar{z}_{T})\equiv Y_{t}(\bar{z}_{T},\bar{M}_{T}(\bar{z}_{T}))$ denote, respectively, the potential values of the mediator and outcome at time $t$ when the treatment path is set to $\bar{z}_{T}$
and let $Y_{t}(\bar{z}_{T},\bar{m}_{T})$ denote the potential value of the outcome at time $t$ when the treatment path is set to $\bar{z}_{T}$ and the mediator path to $\bar{m}_{T}$.
Total effect (TE) of treatment path $\bar{z}_{t}$ versus path $\bar{z}_{t}^{*}$ on $Y_{t}$
These are functional versions where funtional potential outcomes depend on functional treatment paths
Assumptions
A1: $\Pr(\bar{Z}_{T} \in \tilde{\mathcal{D}}_{T}^{z}) > 0$; for any Borel measurable subset
$\tilde{\mathcal{D}}^{zm}_{T}$ of $\bar{\mathcal{D}}^{zm}_{T}$ with positive measure, $\Pr((\bar{Z}_{T}, \bar{M}_{T}) \in \tilde{\mathcal{D}}_{T}^{zm}) > 0$.
A2: For all $\bar{z}_{T}\in \bar{\mathcal{D}}^{z}_{T}$,
$$
\begin{equation} \label{eq:causal_assump1a}
\bar{Y}_{t}(\bar{z}_{T},\bar{M}_{T}(\bar{z}_{T}))~\bot~\bar{Z}_{T},
\end{equation}
$$
and for all $(\bar{z}_{T}, \bar{m}_{T}) \in \bar{\mathcal{D}}_{T}^{zm}$,
$$
\begin{equation}\label{eq:causal_assump1b}
\bar{Y}_{T}(\bar{z}_{T},\bar{m}_{T})~\bot~\bar{Z}_{T},
\end{equation}
$$
A3: For all $t\in[0,T]$ and ($\bar{z}_{t}, \bar{m}_{t}) \in \bar{\mathcal D}_{t}^{zm}$,
$$
\begin{equation}\label{eq:causal_assump2}
Y_{t}(\bar{z}_{t},\bar{m}_{t})~\bot~\bar{M}_{t}(\bar{z}_{t}) \mid \bar{Z}_{t}.
\end{equation}
$$
A4: For all $\bar{z}_{T}\in\bar{\mathcal{D}}_{T}^{z}$,
$$
\begin{equation}\label{eq:causal_assump3}
\bar{M}_{T}(\bar{z}_{T})~\bot~\bar{Z}_{T}.
\end{equation}
$$
A5: For all $t\in[0,T]$ and triples $(\bar{z}_{t}, \bar{z}^{*}_{t}, \bar{m}_{t}) \in \bar{\mathcal{D}}_{t}^{z} \times \bar{\mathcal{D}}_{t}^{z} \times \bar{\mathcal{D}}_{t}^{m}$ with $\bar{z}_{t} \neq
\bar{z}_{t}^{*}$,
$$
\begin{equation}\label{eq:causal_assump4}
\bar{Y}_{t}(\bar{z}_{t},\bar{m}_{t})~\bot~\bar{M}_{t}(\bar{z}_{t}^{*}).
\end{equation}
$$
These are extensions of scalar ones to functional data, and weaker versions are also possible in our paper.
Causal Identifiability
Theorem. Under A1 and A2, TE is identifiable nonparametrically. Under A1 - A5, TIE and PDE are identifiable nonparametrically.
These are defined on potential outcomes with functional curves $\alpha(t)$, $\beta(t)$, $\gamma(t)$
Theorem. Under the assumptions and the above models, $\mathrm{PDE}(t;z_{t},z_{t}^{*})$ is parametrically identified as $\gamma(t)(z_{t}-z_{t}^{*})$, $\mathrm{TIE}(t;z_{t},z_{t}^{*})$ is parametrically identified as
$\beta(t)\alpha(t)(z_{t} -
z_{t}^{*})$.
Theorem. Under the assumptions and the above models, $\mathrm{TE}(t;\bar{z}_{t},\bar{z}_{t}^{*})$ is parametrically identified:
$$
\begin{align}
\scriptsize
\int_{\Omega_{t}^{2}}(z_{s}-z_{s}^{*})\gamma(s,t)~\mathrm{d}s+\int_{\Omega_{t}^{1}}(z_{s}-z_{s}^{*})\int_{\Omega_{t}^{3}}\alpha(s,u)\beta(u,t)~\mathrm{d}u~\mathrm{d}s.
\end{align}
$$
and the direct and indirect components are also parametrically identified.
Historical Model: Direct and Indirect Effects
Direct Effect
Indirect Effect
Causal effects are 1D/2D integration of the shaded
Method: Basis
We estimate two SEM equations separately. The concurrent model is easy.
Using the matrix form, $X = (M, Z)$, the historical model
$$
Y(t)=\int_{\Omega_{t}} X(s)\theta(s,t)~\mathrm{d}s+\epsilon(t),
$$
Bivariate function $\theta_{j}(s,t)$ expanded as
$$
\theta_{j}(s,t)=\sum_{k=1}^{K_{1j}}\sum_{l=1}^{K_{2j}}g_{klj}\phi_{kj}(s)\eta_{lj}(t)
$$